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This document provides supplementary information to “Fusion-Based Enhancement of Multi-
Exposure Fourier ptychographic microscopy”. We further elaborated on the structure and param-
eter details of the multi-exposure image fusion framework, the significance of the feature-domain
reconstruction algorithm, its integration with the multi-exposure image fusion framework, and
presented numerical simulation results as well as results from traditional Fourier ptychographic
microscopy (FPM) reconstruction algorithms. This more comprehensive demonstration highlights
the functionality and significance of MEIF, followed by additional discussions.

1. MEIF STRUCTURE DETAILS

In Fig. 1, we introduce the MEIF network, comprising four convolutional layers, a feature fusion
module, and input-output components. The first two of these convolutional layers are responsible
for feature extraction, while the latter two are tasked with performing a weighted average to
generate the output image. This arrangement effectively embodies the dual roles of convolutional
layers in image processing: feature extraction and weighted averaging for output [? ].

A. Feature extraction module
The feature extraction module comprises two pivotal convolutional layers, CONV 1 and CONV
2, essential in image fusion algorithms. However, achieving effective feature extraction using
conventional convolutional kernels presents a challenge due to their randomness. Therefore, we
leverage pre-trained results from another dataset (ImageNet) to initialize the initial convolutional
layer, referred to as CONV 1 in MEIF. This layer comprises 64 convolutional kernels of size 7 × 7,
sufficient for extracting a substantial number of features. Moreover, to enhance effectiveness,
the parameters of CONV 1 remain fixed during training. To further facilitate the recognition of
features extracted by CONV 1, we introduce CONV 2, which fine-tunes the convolutional features
of CONV 1 and enhances their adaptability in feature fusion.

B. Feature fusion module
The purpose of the feature fusion module is to combine features obtained from multiple sets of im-
ages into a single set for eventual reconstruction. Here, we select an element-wise fusion approach,
which can be mathematically described by Eq. (S1). This method has been proven to be highly
effective for fully convolutional image reconstruction networks. Through meticulous experimen-
tation and validation, and considering the emphasis on rich detail in computational microscopy
imaging, element-wise maximum fusion has demonstrated the best performance. Therefore, all
subsequent work in our research follows the element-wise maximum fusion approach.
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C. Feature reconstruction module
The image reconstruction module consists of an additional two convolutional layers, which
utilize CONV 3 and CONV 4 for the weighted combination of features to produce the fused
reconstruction result. CONV 3 further refines fused features and CONV 4 then reconstructs these
features into a 3-channel output through elementwise averaging. The parameters of these two
convolutional layers are determined through training, and their dimensions need to match those
of CONV 2 and the final expected single-channel output.

D. Parameter setting of MEIF network
In these four convolutional layers, CONV 1 remains pre-trained, with its parameters unchanged
during training, while the parameters of the other three convolutional layers are optimized based
on the training data. The purpose of CONV 2 is to further extract features, thus its parameters need



to match those of CONV 1; CONV 3 further fine-tunes the convolutional features, hence sharing
parameters with CONV 2; CONV 4 reconstructs all features into a single output. The dimensional
parameters of each convolutional layer should adhere to these principles. Additionally, for better
training, both CONV 2 and CONV 3 are equipped with ReLU activation layers [? ] and batch
normalization layers to achieve improved output performance.

Based on these principles, the final parameters of the network are determined as follows:
CONV 1 comprises 64 kernels of size 7 × 7, with a stride and padding set to 1 and 3 respectively;
CONV 2 and CONV 3 both consist of 64 kernels with a size of 3 × 3, a stride of 1, and padding of
1; CONV 4 has a kernel size of 1 × 1, aimed at compressing the 64-channel feature maps into the
target image.

In conclusion, the structure and parameters of the MEIF network are established through
systematic parameter selection and integration of a pre-trained network. This ensures stable
implementation of the image fusion functionality as a preprocessing framework, with guaranteed
generalizability post pretraining. Although CNN networks have matured in the field of computer
vision [? ? ], making their debut in the realm of microscopy imaging. The training of the network
relies entirely on openly available datasets commonly used in computer vision, such as ImageNet
and datasets publicly. Given that many datasets are in RGB three-channel format, in the specific
process of computing microscopy imaging, we need to actively enhance grayscale images and
then directly utilize MEIF for preprocessing to obtain results suitable for reconstruction.

2. EXPERIMENTAL SETUP AND PARAMETERS

Table S1. Equipment parameters

LED Array LED Spacing Illumination Distance Objective

Equipment 1 17*17 4mm 70.0mm 4×/0.1NA,Nikon

Equipment 2 19*19 4mm 65.0mm 4×/0.1NA,Nikon

To comprehensively validate the generality and effectiveness of our proposed MEIF pre-
processing method, experiments were conducted using various samples and experimental setups
with different parameters (see Table S1). Specifically, raw data for the USAF and onion epidermis
samples were acquired using Equipment 1, while data for the connective tissue samples were
collected using Equipment 2. According to calculations, the numerical apertures were increased
by 6.4 times and 7.2 times for the two systems, respectively. Theoretically, this extends the
resolution to 3.1600 micrometers and 2.2850 micrometers, respectively.

Moreover, to underscore the versatility, different exposure times were utilized for Equipment
1 and Equipment 2. Equipment 1 employed red light with a wavelength of 632 nanometers,
whereas Equipment 2 utilized blue light with a wavelength of 457 nanometers for illumination
(denoted by asterisks in Table S2). Owing to the distinct wavelengths and sample characteristics,
the exposure times required to achieve the same exposure level varied. Detailed experimental
parameters are provided in Table S2.

Table S2. Experimental parameters

Sample EV-1 EV0 EV+1 EV+2 EV+4 Equipment

USAF resolution calculator 2ms 4ms 8ms 16ms 64ms Equipment 1

Onion epidermis 8ms 16ms 32ms 64ms 256ms Equipment 1

Connective tissue* 1ms 2ms 4ms 8ms 32ms Equipment 2

For all samples, we consistently employed a standardized set of relative exposure parame-
ters. The EV 0 exposure, defined as the normal exposure, was determined using the camera’s
automatic settings. Given the broad range of selected exposure values, minor deviations are
unlikely to impact the results significantly, allowing us to confidently rely on either the automatic
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exposure or subjective judgment. Once the exposure time for EV 0 is established, we calculate
the corresponding exposure times for EV -1, EV +1, EV +2, and EV +4, and proceed with the
multi-exposure data collection. The chosen range, spanning from EV -1 to EV +4, is sufficiently
broad to capture fine details from both the dark regions in bright-field imaging and the majority
of useful information in dark-field imaging. This range ensures comprehensive data acquisition
across various conditions.

In terms of exposure selection, the lower EV values (e.g., EV -1, EV 0, EV +1) are primarily used
for conventional HDR imaging, while the higher EV values (e.g., EV +2, EV +4) are focused on
capturing richer details in dark-field imaging—information that traditional HDR methods often
fail to utilize sucessfully (see Sec. 4. INTENSITY INVERSION AND MISALIGNMENT) .

Through validation across multiple samples, this exposure range has proven highly suitable,
consistently providing rich detail without introducing excessive noise. As a result, we recommend
adopting the same exposure parameters for further experimentation and refinement. Although
expanding the exposure range is possible, experimental results indicate that doing so does not
significantly enhance image quality. Thus, the selection of EV -1 to EV +4 strikes an ideal balance
between optimal imaging performance and efficient information capture.

3. MULTI-EXPOSURE IMAGE FUSION AND HIGH DYNAMIC RANGE
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Fig. S1. Reconstruction results of a local region in onion epidermis samples using MEIF, HDR,
and single-exposure images. The numbers 1 and represent the intensity and phase of the recon-
structed results, respectively. (a) Reconstruction with MEIF. (b) Reconstruction with C-HDR,
involving a process that truncates overexposed and underexposed regions before weighted
averaging. (c) Reconstruction with M-HDR, directly averaging all exposure results. (d) Recon-
struction with single-exposure raw data.

HDR was introduced to FPM in 2013 [? ] but has not received adequate attention over the
years. Essentially, MEIF utilizes a dataset same to HDR and possesses the capability to extend
the dynamic range. MEIF leverages CNNs for feature extraction and combination, resulting in
a fused output. Traditional HDR methods typically adopt two main approaches: one involves
directly linearly combining all multi-exposure images, yielding an average result known as mean
HDR (M-HDR). The other method restores each image’s exposure gain to the same dynamic
range, removes overexposed and underexposed portions, and calculates a weighted average.
This approach is consistently referred to as C-HDR.

MEIF and both HDR methods can effectively enhance the information content of the original
data (see Supplementary 1). However, the difference lies in the fact that the information enhance-
ment provided by MEIF can be more efficiently utilized by reconstruction algorithms, resulting in
better reconstruction outcomes.

In Fig. S1, a small section of onion epidermis is reconstructed using MEIF, different HDR
algorithms, and a single normal exposure. The results presented in Fig. S1(b1-c2), obtained
through the two HDR methods, demonstrate a noticeable improvement compared to the single-
exposure reconstruction. The most impressive improvement is still shown by the meif effect in
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Fig. S1(a1-a2) , where all the details become sharp and we can even clearly see some structures in
the cell. However, there is no significant difference between the two HDR methods, suggesting
that C-HDR and M-HDR show little distinction in FPM. The comparable enhancement effects
demonstrate the imperfect utilization of dark-field information by C-HDR methods. From another
perspective, this also underscores the immense potential of dark-field information. Therefore,
many researchers persist in advocating for the universal use of HDR in any scenario. MEIF may
present itself as a better choice for them in the future.

4. INTENSITY INVERSION AND MISALIGNMENT

In multi-exposure imaging, when the exposure range is too large, images with excessively high
exposure are inevitably included. Under such conditions, due to the limitations of the sensor’s
maximum signal capacity, truncation and incomplete absorption are bound to occur, leading to
inevitable signal distortion. Although HDR can somewhat alleviate this phenomenon, its reliance
on linear combination still leaves it vulnerable to signal distortion in certain exposure groups,
resulting in issues when utilizing large-range multi-exposure images. Below, we will provide a
detailed demonstration and comparison of this phenomenon.

A. Reconstruction Results with Single Exposure
A.1. Simulation Results

During our simulation experiments, we first saved the generated data as PNG images before
reading them, simulating the compression of raw data by camera sensors and processors.
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Fig. S2. Reconstruction results of FPM using MEIF based on simulated data. The recovery
algorithm employed is FD-FPM. Images (a1) and (a2) depict the phase map and intensity map
after MEIF, respectively. Images (b1), (c1), (d1), (e1), and (f1) show the intensity of the recovery
results under exposures of EV -1, EV 0, EV +1, EV +2, and EV +4, respectively. Images (b2), (c2),
(d2), (e2), and (f2) illustrate the phase of the recovery results.

Fig. S2 displays the recovery results with MEIF and the results under different single-exposure
conditions without MEIF. In the single-exposure results, we initially observed that underexposed
conditions exhibited a significant lack of high-frequency details (see Fig. S2(b1-b2)), whereas
overexposed conditions revealed mismatches in the physical model due to sensor saturation,
resulting in abnormal image intensities (see Fig. S2(d1-f1)). This abnormality is the intensity
inversion we mentioned, which becomes more pronounced in practical experiments. However,
these conditions also provide more phase information, noticeably increasing the resolution of
phase data (see Fig. S2(d2-f2)), without experiencing obvious phase overexposure and detail loss
as seen in experiments. When focusing on the results after MEIF preprocessing, we observed
consistent and optimal resolution with rich phase information. This is reflected not only in sharp
edges but also in high phase resolution. Essentially, MEIF intelligently fuses meaningful data
from all exposure levels, significantly enhancing the information content of the FPM pipeline.

A.2. Experimental Results

In the experiments, we observed more detailed results of intensity inversion.

4



e1

b2

b1
EV -1

25μm

c2

c1
EV 0

25μm

d2

d1
EV +1

25μm 25μm25μm

EV +4

e2

EV +2

-1

1
rad.

10μm

10μm

a1

a2

Fig. S3. Reconstruction results of FPM using FD-FPM based on experimental data. (a1-e2) In-
tensity and phase reconstruction results for EV -1, EV 0, EV +1, EV +2, and EV +4, respectively.

Reconstruction results are optimal under normal and slightly overexposed conditions. This
observation is consistent with conventional experimental data and suggests that additional dark-
field information enhances reconstruction. It is also evident that intensity inversion becomes more
pronounced, and severe misalignment occurs under high exposure conditions. This misalignment
will be discussed in more detail in the following section.

B. Inversion and Misalignment
As previously discussed, inversion and misalignment are key issues. Color inversion, in particular,
clearly indicates misalignment of detailed regions. This phenomenon is more distinctly observed
through the quantitative comparison of the highlighted areas in Fig. S3.
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Fig. S4. Quantitative comparison of the highlighted regions based on Fig. S3. (For easier com-
parison, the maximum value is truncated at 2, rather than the commonly used 1. The minimum
value is set to 0.)

From the figure, it is evident that with more appropriate exposure, the intensity contrast
becomes more pronounced. However, when the brightness reaches EV +2, intensity inversion
occurs, causing the line to curve upwards rather than downwards, which deviates from the
expected pattern of white on black. This represents the inversion phenomenon. Additionally, in
Fig. S4, we observe that the peaks and valleys in the HDR and EV +2 curves are opposite to those
in other curves. The red-highlighted area shows this discrepancy more clearly. The presence of
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inversion results in reversed peaks and valleys, effectively creating a misalignment effect that
impacts observation. Notably, MEIF avoids this issue while maintaining high resolution.

C. Resolution Enhancement
As observed in Fig. S3, many single-exposure images exhibit blurring due to overexposure.
However, thanks to MEIF’s robust information utilization capabilities, it can effectively recon-
struct high-resolution images from these misaligned and blurred data. For instance, with MEIF
reconstruction results, the data for Group 9-6 can be resolved, whereas single-exposure images
typically only allow resolution up to Group 9-3. This demonstrates that MEIF, through advanced
image fusion techniques, can achieve theoretical resolution even with imperfect data, significantly
broadening the practical applications of FPM.

5. RAW DATA WITH MEIF AND HDR
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Fig. S5. Comparison of Partial Raw Data and Their Preprocessed Versions with HDR and
MEIF. (a1-a3) Raw data after MEIF preprocessing, (b1-b3) Raw data with normal exposure,
(c1-c3) Raw data under EV4, (d1-d3) Raw data after c-HDR preprocessing, (e1-d3) Raw data
after mHDR preprocessing. The color and number index represents the relative position and
illumination angle of the images, corresponding to the color scheme in Fig. 3.

Different preprocessing methods’ effects on raw data are demonstrated in Fig. S5. Clearly,
MEIF exhibits the best performance. To better illustrate the enhancement of information by MEIF,
we conducted brightness matching on the right side of each image, ensuring that this part of the
image has the same brightness as the MEIF result, facilitating direct comparison of information
content. As shown in Fig. S5(b1-c3), the results of single exposure exhibit a lack of information,
with a significant amount of noise and data loss after brightness matching. Traditional HDR
methods also show similar phenomena, but it can be seen that c-HDR has better information
extraction capability, although this information cannot be perfectly utilized by existing image
reconstruction algorithms, as evident from the comparison in Fig. S5(d3,e3). In comparison, the
advantages of MEIF are greatly demonstrated. Although it may not be as evident during low-
angle illumination, its superiority is clear during high-angle dark-field illumination, as shown
in Fig. S5(a1, d1, e1). MEIF extracts more valuable information from the feature domain while
discarding the undesirable information from the original overexposed data, which represents a
significant advancement over traditional HDR algorithms.
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6. CONNECTIVE TISSUE

We chose connective tissue as the subject for further experiments, which is an animal sample with
abundant details. Here, we compared the results obtained from traditional FPM, FD-FPM, and
MEIF pre-processing.

In principle, the abundance of dark information provided by MEIF makes it possible to achieve
better reconstruction results even with traditional FPM. Therefore, it is meaningful to examine
the results of the original data from this set of samples under the traditional FPM reconstruction
algorithm after MEIF.

The findings indicate that MEIF exhibits significantly better phase resolution and more reliable
intensity recovery results. Regardless of the restoration algorithm used, the surplus information
provided by MEIF is efficiently utilized, demonstrating the reliability and effectiveness of MEIF.
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Fig. S6. Recovery results of a region of connective tissue under different FPM reconstruction
algorithms. (a1-a4) depict the reconstructions after MEIF preprocessing, while the rest are re-
constructions from single-exposure FPM. The images are divided into two boxes: Box 1 shows
results of FD-FPM reconstruction, and Box 2 presents results of traditional FPM reconstruction.
Within Box 1, (a1-a2) represent the MEIF reconstructions, where (a1) displays intensity and (a2)
displays phase. Similarly, (b1-b2), (c1-c2), (d1-d2), (e1-e2), and (f1-f2) showcase intensity and
phase reconstructions for EV -1, EV 0, EV +1, EV +2, and EV +4, respectively. The same applies
to Box 2, illustrating reconstructions with traditional FPM for the same dataset in a similar se-
quence: (a3-a4), (b3-b4), (c3-c4), (d3-d4), (e3-e4), and (f3-f4) represent MEIF-preprocessed, EV
-1, EV 0, EV +1, EV +2, and EV +4, with intensity on the upper half and phase on the lower half.

First, focusing on the results of FD-FPM in Box 1 of Fig. S6, it is evident that the most
informative recovery results are achieved after MEIF preprocessing [see Fig. S6 (a1-a2)]. In terms
of intensity, it exhibits the most detailed features, such as textures and grooves within the tissue, as
previously demonstrated. Similarly, regarding intensity, overexposure leads to intensity reversals,
resulting in reduced details and a cluttered background, which is unacceptable in biological
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tissues [see Fig. S6 (d1-f1)]. Given the complexity of the structure, a cluttered background implies
a significant loss of information. MEIF effectively extracts valuable information, resulting in
excellent intensity resolution. Particularly noteworthy are the results in the phase domain, where
MEIF provides exceptionally rich phase information. We can clearly discern structures, fibers, and
even some finer details, which are mere highlights under single-exposure conditions, representing
a significant advancement.

Next, examining the reconstruction results of traditional algorithms, displayed in Box 2 of Fig.
S6. Similarly, exhibiting trends akin to traditional FPM, the intensity images from overexposed
conditions are entirely unusable [see Fig. S6 (d3-f3)]. However, due to the less advanced
algorithms, they fail to deliver reconstructions comparable to FD-FPM. The phase images from
single-exposure conditions further highlight the phase noise that increases with exposure time,
resulting in a loss of information or clutter [see Fig. S6 (d4-f4)]. Nonetheless, MEIF produces
surprising results [see Fig. S6 (a3, a4)], offering excellent contrast and rich information in
intensity, along with significant detail in phase, compared to reconstructions from traditional
single-exposure algorithms. However, when compared to FD-FPM after MEIF preprocessing
showed in Fig. S6 (a1, a2), it falls slightly short in noise performance and detail richness. This
further underscores the combination of FD-FPM with MEIF as an exceptionally promising choice
for future FPM applications.
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